Exam. Code : 103202
 Subject Code : 1028

B.A./B.Sc. $2^{\text {nd }}$ Semester MATHEMATICS
 Paper-I
 (Calculus \& Differential Equations)

Time Allowed--3 Iours]
[Maximum Marks-50
Note :- Attempt FiVE auestions in all, selecting at least TWO questic is irom each section.

SEC. (ON-A

1. (a) Show that the asymp ${ }^{+o^{\circ} ;}$ of the curve $x^{4}-5 x^{2} y^{2}+4 y^{4}+x^{2}-y^{2}+x+y+1=0$
cut the curve in atmost eight points which lie on a rectangular hyperbola.
(b) Show that the abscissa of the point of uflexion on the curve :

$$
x=a-b \cos \theta, y=a \theta-b \sin \theta \text { is } \frac{a^{2}-b^{2}}{a}
$$

2. (a) Show that at the point $(1,-1)$, there is a cusp on the curve :

$$
x^{3}+x y^{2}+y^{3}-4 x^{2}+y^{2}+4 x+y-1=0
$$

www.a2zpapers.com
(b) In an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ show that the radius of curvature at the end of the major axis is equal to the semi-latus rectum of the ellipse. 5,5
3. (a) Trace the curve $x^{3}+y^{3}=3 a x y, a \geq 0$
(b) Evaluate $\int \frac{\sinh x+\cosh x}{\sinh ^{3} x-\cosh ^{3} x} d x$.
4. (a) If $I_{n}=\int(\ln g x)^{n} d x$, prove that

$$
I_{n}+I_{n-1}=x(\log x)^{n}
$$

(b) Show that $\int_{0}^{\pi / 2} \sin ^{2 m} \partial \operatorname{cus}^{2 m-1} \theta d \theta$

$$
=\frac{(2 m-2)(2 m-4)--4.2}{(4 m-1)(4 m-3)---(2 m+1)}, \quad m \text { being } a
$$ positive integer >1.

5. (a) Prove that $\int_{0}^{\pi} \frac{x d x}{a^{2} \cos ^{2} x+b^{2} \sin ^{2} x}=\frac{\pi^{2}}{2 a b}$
(b) Find the area above the x-axis and included between the curves $y^{2}=2 a x-x^{2}$ and $y^{2}=a x$. 5,5
www.a2zpapers.com

SECTION-B

6. (a) Find the necessary and sufficient condition that the equation $\mathrm{Mdx}+\mathrm{Ndy}=0$ may be exact.
(h) Solve : $y-2 p x=f\left(x^{2}\right)$.
7. (u) Solve and examine for singular solution of the differential equation :
$(p x-y)(x-p y)=2 p$.
(b) Find the o.thogonal trajectory of the series of parabolas whose equation is $\mathrm{y}^{2}=4 \mathrm{ax}$.
8. (a) Solve : $\left(D^{3} \div 2 D^{2}+D\right) y=x^{2} \cos x$.
(b) Solve: $\left(\mathrm{D}^{2}+\mathrm{a}^{2}\right) \mathrm{y}=\mathrm{sfa} \mathrm{ax}$, by method of variation of parameters.
9. (a) Solve in series :
$\left(x-x^{2}\right) \frac{d^{2} y}{d x^{2}}+(1-5 x) \frac{d y}{d x}-4 y=1$
(b) Solve in series :
$\left(x+x^{2}+x^{3}\right) \frac{d^{2} y}{d x^{2}}+3 x^{2} \frac{d y}{d x}-2 y=0 \quad 5,5$
10. (a) Solve in series Bessel's Differential Equation of order n .
(b) Solve : $\left(x^{3} D^{3}+3 x^{2} D^{2}+x D+1\right) y=x \log x$
